Used By Trade Professionals For Planned/Responsive Maintenance

For more advice, or to order, please call:

01799 528528

Open Mon to Fri 8:30am to 6:00pm

Closed Saturdays, Sundays & Bank Holidays

Cut off time for next working day delivery is 4:00pm


for air combustion venting for heating appliances

Air Combustion Ventilation For Heating Appliances

All you need to know about a new balanced approach

The Problem
  • Vents need hoods to counteract draughts and rain ingress from head-on winds
  • Conventional hoods increase draughts from common upward winds
  • Subject to cross winds, conventional hoods significantly reduce Effective Area
The Solution - ArrestAir-Pro
  • ArrestAir-Pro is a combined grille and hood
  • ArrestAir-Pro controls draught irrespective of wind direction
  • ArrestAir-Pro does not cause significant reduction of Effective Area in cross winds

For many years simple passive through-the-wall vents - simple holes in the wall with grilles over their ends to keep the wildlife out - have provided "trickle" ventilation by letting fresh air in and stale, damp air out of dwellings. Such vents are also used to provide fresh air for combustion in open-flue gas, oil and solid-fuel boilers and fires. However, the trickle of fresh air blowing into many passive through-the wall vents can so easily become a torrent as the outside wind increases beyond a gentle breeze.

To counteract the resulting draughts indoors, several vents have recently been developed in an attempt to reduce this irritating airflow while simultaneously preserving the statutory requirement for a minimum Effective or Equivalent Free Area of 100 cm2 (BS 5440 Part 2: 2000) for gas vents which may provide fresh air for an open-flue boiler. However, the standard test to determine the Effective Area has been performed only in still outside air.

When the new range of vents (with their open-bottomed hoods designed to ward off head-on winds and prevent the ingress of rain) are tested for their Effective Area subject to winds blowing parallel to the wall, the hoods cause serious problems. Firstly, as the wind is forced to go over a building - as it often is in order to get by it - it frequently approaches at an upward angle and is scooped up by a conventional vent´s hood; this causes as much draught as a head-on wind approaching a hoodless vent as shown overleaf. Secondly, when the wind approaches from the side - as it does in many situations such as between buildings or when the wind is simply in that direction - the Discharge Coefficient (the ratio of its Effective Area with a crossflow to that in still air) of a conventional hooded vent can be reduced by up to 50% (see below).

Most manufactures do not take cross winds into account. However, as shown overleaf, tests funded by the Health and Safety Executive have demonstrated that the ArrestAir-Pro does indeed allow for cross winds and leads the field in controlling draughts while largely preserving its Effective Area irrespective of the direction of wind approach

ArrestAir Pro Graphs

* From BULMAN, S. and N. CHAN (2004): Development of a ventilator test procedure to take account of external wind conditions. Advantica Limited, Loughborough, pp 99-100. Based on tests by ETHERIDGE, D. and E. Y-H CHIU at the School of the Built Environment of the University of Nottingham funded by the Health and Safety Executive.

All prices include mainland UK delivery (exclusions apply )

Get Help or Advice!

The Condensation Shop offers a wide range of products to suit numerous condensation and damp related issues.

If you would like assistance in selecting the correct product for your specific problem please call our helpful Sales Team on 01799 528528, during normal opening hours.